
A General Framework for Motion Segmentation:
Independent, Articulated, Rigid, Non-rigid,

Degenerate and Non-degenerate

Jingyu Yan and Marc Pollefeys

Department of Computer Science,
The University of North Carolina at Chapel Hill,

Chapel Hill, NC 27599
{yan, marc}@cs.unc.edu

Abstract. We cast the problem of motion segmentation of feature tra-
jectories as linear manifold finding problems and propose a general frame-
work for motion segmentation under affine projections which utilizes two
properties of trajectory data: geometric constraint and locality. The geo-
metric constraint states that the trajectories of the same motion lie in a
low dimensional linear manifold and different motions result in different
linear manifolds; locality, by which we mean in a transformed space a
data and its neighbors tend to lie in the same linear manifold, provides a
cue for efficient estimation of these manifolds. Our algorithm estimates a
number of linear manifolds, whose dimensions are unknown beforehand,
and segment the trajectories accordingly. It first transforms and nor-
malizes the trajectories; secondly, for each trajectory it estimates a local
linear manifold through local sampling; then it derives the affinity matrix
based on principal subspace angles between these estimated linear man-
ifolds; at last, spectral clustering is applied to the matrix and gives the
segmentation result. Our algorithm is general without restriction on the
number of linear manifolds and without prior knowledge of the dimen-
sions of the linear manifolds. We demonstrate in our experiments that
it can segment a wide range of motions including independent, articu-
lated, rigid, non-rigid, degenerate, non-degenerate or any combination
of them. In some highly challenging cases where other state-of-the-art
motion segmentation algorithms may fail, our algorithm gives expected
results.

2

1 Introduction

Motion segmentation of trajectory data has been an essential issue in under-
standing and reconstructing dynamic scenes. Dynamic scene consists of multiple
moving objects with a static or moving camera. The objective is to segment the
feature trajectories according to the motions in the scene.

Ever since Tomasi and Kanade[17] introduced the factorization method based
on the idea that trajectories of a general rigid motion under affine projection
span a 4-dimensional linear manifold, this geometric constraint has been used
extensively in motion segmentation, especially for independently moving objects
whose trajectories have a nice property that they are from independent sub-
spaces. Most notably, Costeria and Kanade[2] constructs a shape interaction
matrix from this fact and uses the zero product between independent trajecto-
ries as a segmentation criteria. More recently, Yan and Pollefeys[21], Tresadern
and Reid[22] studied articulated motions, another paradigm of dynamic scenes,
and drew a conclusion that the motions of linked parts are dependent and their
subspaces are intersecting on 1 or 2 dimensions depending on whether the link
is a joint or an axis. Besides rigid motions, Bregler et al.[3] and Brand[4] showed
that non-rigid motions like human facial motion etc. can be approximated using
a higher dimensional linear subspace.

To sum up, motion segmentation of a dynamic scene that consists of mul-
tiple motions, either independent, articulated, rigid, non-rigid, degenerate or
non-degenerate, can be casted as a linear manifold finding problem. The chal-
lenges are from the unknowns like dimensionality and dependency of these linear
manifolds.

We propose a general framework for motion segmentation under affine pro-
jections. Our algorithm estimates a number of linear manifolds of different di-
mensions and segment the trajectories accordingly. It first estimates a local lin-
ear manifold for each trajectory by local sampling; then it derives an affinity
matrix based on principal angles between each pair of estimated linear mani-
folds; spectral clustering is then applied to the matrix and segments the data.
Our algorithm is general without restriction on the number of linear manifolds
or their dimensionalities. So it can segment a wide range of motions includ-
ing independent, articulated, rigid, non-rigid, degenerate, non-degenerate or any
combination of them.

Due to the large volume of works of motion segmentation, we need to draw
the distinction between our work and the previous ones. Most of the previous
works assume independency between motion subspaces (Boult and Brown [8],
Gear[9], Costeria and Kanade[2], Kanatani[11], Ichimura[10]) while our goal is
to deal with a mixture of dependent and independent motions in a unified way.

Zelnik-Manor and Irani[12] addresses the dependency problem between mo-
tion subspaces and deals with it using a method with the same nature as [2]
but an elevated perspective from Weiss[14] to derive an affinity matrix, followed
by the technique of [11] to separate the dependent motions. In their case, the
angle between every pair of vectors, expressed by a dot product, are used as the
affinity measurement. However, unlike the independent motion subspace cases,

3

angles, or any other distance measurement between the data, do not reflect the
true geometric constraints, the subspace constraints, that we use to segment
the data. Instead, our method uses the distance between two locally estimated
subspaces of each data, expressed by subspace principal angles, as the affinity
measurement. This new affinity measurement reflects the true nature of the con-
straint for segmentation and leads to more accurate results, which is confirmed
by our experiments.

Vidal et al.[18][19][20] propose an algebraic framework called GPCA that can
deal with dependent and independent subspaces with unknown dimensionality
uniformly. It models a subspace as a set of linear polynomials and a mixture of n
subspaces as a set of polynomials of degree n. Given enough sample points in the
mixture of subspaces, the coefficients of these high degree polynomials can be
estimated. By differentiating at each data point, the normals of each data can be
estimated. Then it also uses standard methods like principal angles and spectral
clustering to segment the data. However, because GPCA first brings the problem
to a high degree nonlinear space and then solves it linearly, the number of sample
points required by GPCA to estimate the polynomial coefficients becomes its
Achilles’ heel, which grows exponentially with the number of subspaces and the
dimensions (©((d + 1)n), d is the dimension of the largest underlying subspace
and n is the number of subspaces). In practice, the number of trajectories can
hardly satisfy GPCA’s requirement for it to handle more than 3 subspaces. And
for non-rigid motion subspaces whose dimensions are more than 4, the situation
gets even worse. Our method requires ©(d × n) trajectories which makes it
practical to handle not only multiple motions but also non-rigid motions that
have a higher dimension.

Our approach has not been attempted in motion segmentation. Under a
different context [13] uses local sampling and clustering to identify discrete-time
hybrid systems in piecewise affine form. We need to point out the differences:
first, motion data is not in piecewise form; second, the first step of our approach
that projects motion data onto a sphere is important in order to ”localize” data
of the same underlying subspace while [13] assumes that the data is piecewise
beforehand. Our approach is motivated and derived independently, specifically
aiming at motion segmentation.

The following sections are organized as followed: Section 2, detailed discussion
of motion subspaces of all kinds; Section 3, the algorithm and its analysis; Section
4, experimental results; Section 5, conclusions and future work.

2 The Motion Subspaces

We are going to show that the trajectories of different kinds of motions lie in some
low-dimensional linear manifolds under affine projection which models weak and
paraperspective projection.

4

– For rigid motions, the trajectories of a rigid object forms a linear subspace
of dimensions no more than 4 ([17]).

M2f×p = [R2f×3|T2f×1]
[

S3×p

11×p

]
(1)

f is the number of frames and p, the number of feature trajectories.
– For independent motions, [Ri|Ti] is independent for each motion i, so each

motion Mi = [Ri|Ti]
[

Si

1

]
lies in an independent linear subspace of dimen-

sion no more than 4 ([2]).
– For articulated motions ([21][22]),

• If the link is a joint, [R1|T1] and [R2|T2] must have T1 = T2 under the
same coordinate system. So M1 and M2 lie in different linear subspaces
but have 1-dimensional intersection.

• If the link is an axis, [R1|T1] and [R2|T2] must have T1 = T2 and ex-
actly one column of R1 and R2 being the same under a proper coordi-
nate system. So M1 and M2 lie in different linear subspaces but have
2-dimensional intersection.

– The trajectories of a non-rigid object can be approximated by different
weighings of a number of key shapes ([3][4][5]) and, as shown below, lie
in a linear subspace of dimension no more than 3k + 1.

M =

c1
1R

1
2×3|...|c1

kR1
2×3|T 1

2×1

...

cf
1Rf

2×3|...|cf
kRf

2×3|T f
2×1

S1
3×1

...
Sk

3×p

11×p

 (2)

ci
j (1 ≤ i ≤ f, 1 ≤ j ≤ k).

To sum up, the trajectories of a mixture of motions lie in a mixture of linear
manifolds of different dimensions. If we can estimate these underlying linear
manifolds accurately enough, we can segment the trajectories accordingly.

3 The Algorithm

In this section, we first outline our algorithm and discuss the details of each step.
In the end, we will discuss the issue of outliers.

Our algorithm first transforms the trajectory data; then it estimates a local
linear manifold for each trajectory by local sampling; it derives an affinity matrix
based on principal subspace angles between each pair of local linear manifolds;
spectral clustering is applied to the matrix and gives the segmentation result.

3.1 Motion Data Transformation

Given a motion matrix W2f×p, decompose W into U2f×K ,DK×K and V T
K×p

by SVD, assuming rank(W) is K (A practical algorithm for rank detection is

5

described in (Section 3.5)). Normalize each column of V (:, 1 : K)T . Each column
unit vector vi(i = 1...p) becomes the new representation of the corresponding
trajectory.

This transformation is an operator that projects a R2f vector wi(the ith
column of W) onto the RK unit sphere which preserves the subspace property,
which is that any subset of wi(i = 1...p) spans a subspace of the same rank of
the corresponding subset of vi(i = 1...p).

The purposes of transforming the trajectories into a unit sphere are:

– Dimension reduction. Notice each trajectory is a 2f × 1 vector. Most of the
dimensions are redundant and can be effectively reduced by linear transfor-
mations.

– Normalization of the data.
– Preparation for the local sampling in the next step. Locality of trajectory

data in our algorithm is not defined in the image coordinate space, i.e. prox-
imity in images, but defined on the sphere which has simple geometric mean-
ings.

We are going to perform the segmentation on these unit vectors. It is equiv-
alent to state that we are trying to find a set of Rt spheres (1 ≤ t < K) whose
union is the RK sphere. And each vector is grouped according to this set of
spheres unless it lies at the intersection of some spheres, in which case it can be
grouped to either of these intersecting spheres (Fig. 1).

Fig. 1. There are two underlying subspaces of dimension 2 for the data which are
transformed onto the R3 unit sphere. The empty dots represent a group of transformed
data belonging to one subspace and the black dots represent another. Due to noise,
the dots may not lie exactly on the R2 spheres. And the intersection area is where
”overestimation” may happen, by which we mean that local sampling results in a local
subspace estimation that crosses different underlying subspaces.

6

3.2 Subspace Estimation by Local Sampling

In the transformed space (e.g. see Fig. 1), most points and their closest neighbors
lie on the same underlying subspace, which allows us to estimate the underlying
subspace of a point α by local samples from itself and its n closest neighbors,
i.e. computing the subspace of [α, α1, ..., αn]K×(n+1). This can be easily achieved
using SVD (See Section 3.5 for rank detection). Because all the points lie in a
RK unit sphere, we can use either the Euclidean distance ‖α − β‖2 ∈ [0, 2] or
the angle arccos(αT β ∈ [0, π] to find the n closest neighbors. Our algorithm is
not very sensitive to the choice of n as long as n + 1 must not be less than the
dimension of its underlying subspace.

Two naturally raised questions: what happens to a point near an intersection
of subspaces, whose neighbors are from different subspaces (Fig. 1). Secondly,
what if a point and its n neighbors do not span the whole underlying subspace?
We will discuss these two important situations in the following section after
introducing the concept of distance between subspaces.

The subspace constraint of the points is a reliable geometric property for seg-
mentation while the ”distance” between the points is not. Most previous works,
e.g. [2][10][11][12], use the dot product of the trajectories or some normalized
form as the affinity measurement for clustering. The dot product actually mea-
sures the angle between the trajectories and is a ”distance” in essence. They
assume that points of the same subspace are closer in ”distance”. This assump-
tion mostly stems from works for independent motions [2], in which the dot
product is always 0. But for dependent motions whose subspaces intersect like
in Fig. 1, this assumption is invalid. Our affinity definition, which is the distance
between two local estimated subspaces described by principal angles in the next
section, reliably base the segmentation on the criteria of subspace constraint
that the points conform to.

3.3 Principal Angles Between Local Subspaces

The distance between two subspaces can be measured by principal angles. The
principal angles between two subspaces P and Q are defined recursively as a
series of angles 0 ≤ θ1 ≤,...,≤ θM ≤ π/2 (M is the minimum of the dimensions
of P and Q):

cos(θm) = maxu∈S1,v∈S2uT v = uT
mvm

where

‖u‖ = ‖v‖ = 1
uT ui = 0 i = 1, ..., m− 1
vT vi = 0 i = 1, ..., m− 1

We define the affinity of two points, α and β, as the distance between their
estimated local subspaces denoted S(α) and S(β).

a(α, β) = e
−

∑
i=1,...,M

sin2(θi)

7

where θ1,...,θM are the principal angles. Thus, we can build an affinity matrix
for spectral clustering described in the following section.

Before we proceed to the next section, let us take a closer look at the two
scenarios pointed out at the end of Section 3.2.

– When an estimated local subspace crosses different underlying subspaces,
which happens to points near an intersection as shown in Fig. 1 (this usually
happens to the trajectories of features very close to or at an articulated axis
or joint), we call this estimation ”overestimated”. An overestimated subspace
is usually distanced from the underlying subspaces that it crosses because
it has dimensions from other underlying subspace(s). However, points near
an intersection are usually small in amount compared to the total. So over-
estimated subspaces do not have a dominant effect for clustering. Besides,
which cluster a point near an intersection may be classified to relies on which
underlying subspaces have a larger portion of its overestimated subspace. So
in the end it tends to cluster the point to its real underlying subspace. If
not, it results in a misclassification. Our experiments show that if there are
misclassifications, mostly it happens to points that are close to an intersec-
tion.

– When the estimated local subspace is a subspace of the underlying subspace,
we call this estimation ”underestimated” since it only estimates a part of it.
This occurs when the local neighbors may not span the whole underlying
subspace. However, this will not affect the effectiveness of the segmentation
introduced in the following section. To explain why, we use an example in
rigid motions and allow other cases. Suppose two underlying subspaces of
dimension 4 having a 2-dimension intersection. This happens when two ar-
ticulated parts are linked by an axis [21][22]. The total dimension is 6. The
two underlying subspaces, S1 and S2, and their underestimated subspaces,
A, B, C and D, E, F , of dimension 3 (2 is rare because the features corre-
sponding to the point and its neighbors need to be exactly on a line for that
to happen) are as follows.

Subspace \Dimensions 1 2 3 4 5 6
S1 X X X X
A X X X
B X X X
C X X X
S2 X X X X
D X X X
E X X X
F X X X

(3)

8

The number of non-zero principal angles between these subspaces and their
underestimated subspaces are shown as follows.

Subspaces S1 A B C S2 D E F
S1 0 0 0 0 2 1 2 2
A 0 0 1 1 2 2 3 2
B 0 1 0 1 1 1 2 2
C 0 1 1 0 1 1 2 2
S2 2 2 1 1 0 0 0 0
D 1 2 1 1 0 0 1 1
E 2 3 2 2 0 1 0 1
F 2 2 2 2 0 1 1 0

(4)

Generally, intra-subspaces have smaller number of non-zero principal angles
compared to inter-subspaces. So expectedly, an underestimated subspace
tends to be closer to all possible estimated subspaces of its underlying sub-
space than to those of another underlying subspace.

3.4 Spectral Clustering

We can apply spectral clustering, e.g.[16][15], to the affinity matrix and retrieve
N clusters. We advocate recursive 2-way clustering detailed in [16]. Thus we
can re-estimate the local subspaces within the current clusters so that points
belonging to different clusters will not affect each other any more. Secondly,
recursive 2-way clustering gives a more stable result because k-way clustering like
[15] depends on k-means which in turn depends on some random initialization.
The recursive 2-way clustering is as follows, given N is the total number of
underlying subspaces:

– Compute the affinity matrix using the approach in Section 3.2 and 3.3 above
and segment the data into two clusters {C1, C2} by spectral clustering.

– While NumOfClusters{C1, ..., Cn} < N , compute the affinity matrix for
each cluster Ci (i = 1, ..., n) from the points within the cluster; divide Ci

into two clusters, C1
i and C2

i ; evaluate the Cheeger constant[15] of each pair
of C1

i and C2
i and decide the best subdivision, C1

J and C2
J (1 ≤ J ≤ n);

replace CJ with them.

3.5 Effective Rank Detection

In practice, a data matrix may be corrupted by noise or outliers and thus has a
higher rank. We may use a model selection algorithm inspired by a similar one
in [20] to detect an effective rank.

rn = arg minr

λ2
r+1∑r

k=1 λ2
k

+ κ r

9

with λi, the ith singular value of the matrix, and κ, a parameter. If the sum of
all λ2

i is below a certain threshold, the effective rank is 0. The higher the noise
level is, the larger κ we should set.

For rank detection of local estimated subspaces, due to small number of
samples, noise level is higher, so we prefer a larger κ.

3.6 Outliers

In practice, the trajectories may have some outliers. We are going to discuss
their effects under the context of our algorithm.

First of all, an outlier will be classified to one of the segments, which depends
on its locally estimated subspace. We suggest that outliers can be better dealt
with after the segmentation because the segmented subspace offers less freedom
for outliers and makes it easier to detect and reject them.

Second, an outlier will corrupt the estimation of local subspaces of a nearby
point. However, this bad effect will not propagate under our algorithm and only
remains on those points whose neighbors include the outlier. Misclassification
may happen to these points. But as long as the outliers are not dominant in
number, our algorithm is robust.

4 Experiments

We test our approach in various real dynamical scenes with 2 to 6 motions
and a combination of independent, articulated, rigid, non-rigid, degenerate and
non-degenerate motions.

For the experiments, we choose κ = 10−6 to 10−5 for trajectory rank esti-
mation depending on the noise level of the trajectories, and κ = 10−3 for local
subspace rank estimation (See Section 3.5 for more detail). We let n = d where
n is the number of neighbors for local sampling and d is the highest possible
dimension of the underlying subspaces. That is 4 for rigid motions and 7 for
non-rigid motions in our experiments.

Miscalssification errors vs. total number of trajectories and the number of
outliers vs. total number of trajectories for the experiments is summaried in
Table 1. Outliers may be clustered to any segments and are not counted as
misclassification errors.

The first experiment is from a scene with non-degenerate data of an articu-
lated object with a rotating axis. The detected rank of the trajectories is 6. The
segmentation result is shown in Fig. 2. The ranks of the segmented trajectories
are both 4.

The second experiment is from a scene of 2 non-degenerate motions of an
articulated body with a joint. The detected rank of the trajectories is 7. There
are one misclassification, the red dot on the left shoulder. The other red dot on
the left arm is an outlier. The segmentation result is shown in Fig. 3. The ranks
of the segmented trajectories are both 4.

10

Fig. 2. (left and middle) A sequence of a truck moving with the shovel rotating around
an axis. The color of a dot, red or green, shows the segmentation result. (right) The
affinity matrix of local estimated subspaces is shown. The row and columns are re-
arranged based on the segmentation.

Fig. 3. (left and middle) A sequence of a person moving with his head rotating around
the neck. The color of a dot, red or green, shows the segmentation result. There is one
misclassification, the red dot on the left shoulder. The other red dot on the left arm
is an outlier. (right) The affinity matrix of locally estimated subspaces is shown. The
row and columns are rearranged based on the segmentation.

The third experiment is from a scene of 2 degenerate shapes of an articulated
object. Two pages of a booklet is being opened and closed. The detected rank
of the trajectories is 4. The segmentation result is shown in Fig. 4. The ranks of
the segmented trajectories are both 3.

The fourth experiment has 3 motions. It comes from a scene of 2 indepen-
dently moving bulldozers, one of which has an articulated arm rotating around
an axis. Only the side of the articulated arm can be seen so it is a degenerate
shape. The detected rank of the trajectories is 8 before the first segmentation.
Both of the segments have rank 4. The next subdivision is automatically de-
tected (See Section 3.4) for points from the right bulldozer and the segmented
trajectories are of rank 3. The segmentation result is shown in Fig. 5.

The fifth experiment has 3 motions. It comes from a scene with an articu-
lated object of 3 parts. The bulldozer has its forearm and upper-arm moving
articulately rotating around two axes. The detected rank of the trajectories is
6 before the first segmentation. The segmented trajectories have a rank 3 and
4. The rank-4 cluster gets subdivided into 2 rank-3 clusters. There are outliers
in this experiment. They have been clustered to one of the segments. Besides
outliers, there are 4 misclassifications, two of which are the yellow dots on the
forearm and two of which are the red dots on the upper-arm and all of which
are near the axis. The segmentation result is shown in Fig. 6.

11

Fig. 4. (left and middle) A sequence of a booklet whose two pages are being opened and
closed around an axis. The color of a dot, red or green, shows the segmentation result.
There is no misclassification error. The green dot on the rotating axis can be grouped
to either page. (right) The affinity matrix of local estimated subspaces is shown. The
row and columns are rearranged based on the segmentation.

Fig. 5. (left 2)A sequence of two bulldozers moving independently, one of which moves
articulately with its arm rotating around an axis. The color of a dot, red, blue or
yellow, shows the segmentation result. There is one misclassification error which is the
red dot on the forearm near the axis. Besides that, there are several outliers. (right 2)
The affinity matrices for 2-stage segmentations are shown. The row and columns are
rearranged based on the segmentation.

Fig. 6. A sequence of a bulldozer with its upper-arm and forearm moving articulately
around some axis. The color of a dot, red, blue or yellow, shows the segmentation
result. There are 4 misclassification errors. Two are the yellow dots on the forearm and
two are the red dots on the upper-arm. All of them are near the axis connecting both
arms. Besides these, there are several outliers in the trajectories and they are clustered
to one of the segments.

12

The final experiment has 6 motions. It comes from a scene with a person
dancing with his upper body, his head and both of his upper arms and forearms
moving. Besides, his mouth movement generates a non-rigid motion. This is a
highly challenging case not only because of the total number of motions but also
because of the dependency between these articulated motions and the non-rigid
kind of motion on the person’s face. The detected rank of the trajectories is 12
before the first segmentation. Both of the segmented rank-7 and rank-6 clusters
get subdivided into rank-6 and -3 clusters, and rank-4 and -3 clusters repectively.
In the end, the rank-4 cluster gets subdivided into two rank-3 subspaces. There
are outliers and there are about 8% misclassifications, most of which are near
the articulated axes or joints. Interestingly, the green dots on the head are those
features not turning as the head turns. Instead, they move like the features on the
upper body. And indeed, our algorithm classifies them to those features on the
upper body. A second interesting observation is the misclassification of the dark
blue dots near the joint between the body and the person’s right arm. Though
they are far away from the left upper arm of the person, they are actually very
close to the intersection between the motion subspaces of the left and right upper
arms because they both are linked to the body. The segmentation result is shown
in Fig. 7.

Fig. 7. (top) A sequence of a person dancing with his upper body, his head and both of
his upper arms and forearms moving. His mouth motion is non-rigid. The color of a dot
shows the segmentation result. Besides outliers, there are about 8% misclassifications.

4.1 Comparisons

We compare our method with GPCA[18] and trajectory angle based approach,
e.g. [12] except for that we use spectral clustering to segment the affinity matrix
(Table 1). The numbers in the table are misclassification errors vs. the total
number of trajectories and outliers vs. trajectories. Outliers are not counted as
misclassification.

5 Conclusions and Future Work

We propose a general framework for motion segmentation of a wide range of
motions including independent, articulated, rigid, non-rigid, degenerate and non-
degenerate. It is based on local estimation of the subspace to which a trajectory

13

belongs through local sampling and spectral clustering of the affinity matrix
of the these subspaces. We demonstrate our approach in various situations. In
some highly challenging cases where other state-of-the-art motion segmentation
algorithms may fail, our algorithm gives expected results.

We plan to reconstruct complex dynamical scenes with a variety of objects
and motions. An especially interesting case is human motion. Our algorithm
can provide a good initialization for a follow-up EM algorithm to improve the
segmentation and reject outliers.

Table 1. A comparison between our method, GPCA and trajectory angle based
method

Experiment Our Method GPCA Angle based Outliers

Truck 0/83 5/83 16/83 0/83
Head and Body 1/99 10/99 9/99 6/83
Booklet 0/38 2/38 2/38 1/38
Two bulldozers 1/94 4/94 24/94 8/94
One bulldozers 4/85 6/85 11/85 9/85
Dancing 21/268 not enough samples1 78/268 7/268

References

1. M. A. Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model
Fitting with Applications to Image Analysis and Automated Cartography. Comm.
of the ACM, Vol 24, pp 381-395, 1981.

2. J.P. Costeira, T. Kanade, ”A Multibody Factorization Method for Independently
Moving Objects”, IJCV, Vol. 29, Issue 3 pp. 159-179, 1998.

3. C. Bregler, A. Hertzmann, H. Biermann, ”Recovering Non-Rigid 3D Shape from
Image Streams”, Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR ’00), June 2000.

4. M. Brand, “Morphable 3D models from video”, CVPR, pp. II:456-463, 2001.

5. J. Xiao, J. Chai, and T. Kanade, “A closed-form solution to non-rigid shape and
motion recovery”, Proceedings of the European Conference on Computer Vision,
2004.

6. Ullman, S. 1983. Maximizing rigidity: The incremental recovery of 3D structure
from rigid and rubbery motion. Technical Report A.I. Memo No. 721, MIT.

7. Sinclair, D. 1993. Motion segmentation and local structure. In Proceedings of the
4th International Conference on Computer Vision.

1 For the last experiment of 6 motions, GPCA requires a huge number of trajectories
for it to work. Roughly, it needs ©((d + 1)6). d is the dimension of the largest
subspace. For non-degenerate rigid motions, d = 5 [18]; for non-rigid motions, d is
even larger. That many number of trajectories are normally not available in practice.

14

8. Boult, T. and Brown, L. 1991. Factorization-based segmentation of motions. In
Proceedings of the IEEE Workshop on Visual Motion.

9. Gear, C.W. 1994. Feature grouping in moving objects. In Proceedings of the Work-
shop on Motion of Non-Rigid and Articulated Objects, Austin, Texas

10. N. Ichimura. Motion segmentation based on factorization method and discriminant
criterion. In Proc. IEEE Int. Conf. Computer Vision, pages 600605, 1999.

11. K. Kanatani. Motion segmentation by subspace separation and model selec-
tion:model selection and reliability evaluation. Intl. J. of Image and Graphics,
2(2):179197, 2002.

12. L. Zelnik-Manor and M. Irani. Degeneracies, dependencies and their implications
in multi-body and multi-sequence factorizations. In Proc. IEEE Computer Vision
and Pattern Recognition, 2003.

13. G. Ferrari-Trecate, M. Muselli, D. Liberati, and M. Morari. A clustering technique
for the identification of piecewise affine and hybrid systems. Automatica, 39:205–
217, 2003.

14. Y. Weiss. Segmentation using eigenvectors: A unifying view. In International Con-
ference on Computer Vision, pages 975982, Corfu, Greece, September 1999.

15. A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: analysis and an algorithm.
In Advances in Neural Information Processing Systems 14. MIT Press, 2002.

16. J. Shi and J. Malik, Normalized Cuts and Image Segmentation, IEEE Transactions
on Pattern Analysis and Machine Intelligence (PAMI), 2000.

17. C. Tomasi, T. Kanade, ”Shape and motion from image streams under orthography:
a factorization method”, IJCV, Vol. 9, Issue 2 pp. 137-154, 1992.

18. R. Vidal and R. Hartley. Motion Segmentation with Missing Data using Pow-
erFactorization and GPCA. IEEE Conference on Computer Vision and Pattern
Recognition, 2004

19. R. Vidal, Y. Ma and S. Sastry, ”Generalized Principal Component Analysis
(GPCA) ”, Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR’03), June 2003.

20. R. Vidal, Y. Ma and J. Piazzi, ”A New GPCA Algorithm for Clustering Subspaces
by Fitting, Differentiating and Dividing Polynomials”, Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR’04), June 27 -
July 02, 2004.

21. J. Yan, M. Pollefeys, A Factorization-based Approach to Articulated Motion Re-
covery, IEEE Conf. on Computer Vision and Pattern Recognition, 2005

22. P. Tresadern and I. Reid, Articulated Structure From Motion by Factorization,
Proc IEEE Conf on Computer Vision and Pattern Recognition, 2005

23. Multiple View Geometry in Computer Vision, Richard Hartley and Andrew Zis-
serman, Cambridge University Press, 2002

24. G. Golub and A. van Loan. Matrix Computations. Johns Hopkins U. Press, 1996

