
Differential Camera Tracking through Linearizing the Local Appearance
Manifold

Hua Yang Marc Pollefeys Greg Welch Jan-Michael Frahm Adrian Ilie
Computer Science Department

University of North Carolina at Chapel Hill

Abstract

The appearance of a scene is a function of the scene con-
tents, the lighting, and the camera pose. A set ofn-pixel
images of a non-degenerate scene captured from different
perspectives lie on a 6D nonlinear manifold in<n. In gen-
eral, this nonlinear manifold is complicated and numerous
samples are required to learn it globally.

In this paper, we present a novel method and some
preliminary results for incrementally tracking camera mo-
tion through sampling and linearizing the local appearance
manifold. At each frame time, we use a cluster of calibrated
and synchronized small baseline cameras to capture scene
appearance samples at different camera poses. We com-
pute a first-order approximation of the appearance mani-
fold around the current camera pose. Then, as new cluster
samples are captured at the next frame time, we estimate
the incremental camera motion using a linear solver. By
using intensity measurements and directly sampling the ap-
pearance manifold, our method avoids the commonly-used
feature extraction and matching processes, and does not re-
quire 3D correspondences across frames. Thus it can be
used for scenes with complicated surface materials, geome-
tries, and view-dependent appearance properties, situations
where many other camera tracking methods would fail.

1. Introduction

In this paper we address the challenging problem of
tracking in scenes with highly view-dependent appearances.
For example, scenes with curved reflective surfaces, semi-
transparent surfaces, and specular reflections all change in
appearance as the viewpoint changes. This confounding be-
havior typically makes motion estimation very difficult.

Traditionally, tracking is formulated as a search problem
in the parameter space of the transformation. Almost all
tracking approaches use an invariant or parametric model
of the scene appearance. There are two main classes of
tracking approaches. The first class selects a number of

salient features and employs them as an invariant model of
the scene. The second class extracts the tracking informa-
tion from all observations.

Lounget-Higgins [13] employed selected salient features
and their motion in consecutive frames to compute the
epipolar geometry. The epipolar geometry then delivered
the relative camera motion of a calibrated camera. This
method was later extended to general cameras [15, 14].

Methods that use all observed pixels are often applied
in differential settings. Optical flow based methods are
employed to simultaneously recover structure and motion
[3, 10, 8]. These methods rely on a constant appearance
of the scene or a known parametric representation that can
accommodate the varying scene appearance. This second
class of techniques is more closely related to our technique,
which also uses all the image information concurrently. For
example, the appearance of an object under different light-
ing conditions is represented as a 3D illumination linear
subspace in [7, 4]. Bascle and R. Deriche modelled the ap-
pearance of an object using texture appearance templates
[1]. A parametric representation of the scene can also be
formulated as a global statistics of the objects’ appearance
[2, 5], or a filter response [12]. Given the appearance model
of the object, a nonlinear estimation framework is used for
tracking [2]. Recently, Elgammal proposed to learn a gen-
erative appearance model of an object offline, and employ
the model to compute the geometric transformation given
the change of the appearance [6].

In this paper, we present a method that tracks the camera
motion through linearization of the local appearance mani-
fold. A camera cluster with small baselines is used to ac-
quire local appearance samples. Then these samples are
used to compute a linear approximation of the local appear-
ance manifold and to estimate the camera motion parame-
ters in this linear space. Our proposed method does not re-
quire any 3D or 2D correspondences, thus it accommodates
scenes with view-dependent appearance variances. In con-
trast to the methods based on learning an invariant appear-
ance representation, our method avoids the learning process
that requires training data.

1

2. Problem statement

Our novel tracking approach targets scenes with highly
view-dependent appearances. As far as we know this class
of scenes is not handled by any existing technique. It is very
difficult to model appearance behavior in general, and for
this specific class of scenes it is particularly hard to find a
global model due to the highly nonlinear appearance func-
tion. Instead we use multiplelocal models that represent
the global manifold about the current viewpoint. These lo-
cal models are concurrently extracted from the scene while
performing the tracking.

Consider a camera that undergoes complete 6D motion
(3D translation and 3D rotation) in a static scene. At each
frame time, it captures from its current poseP an n-pixel
intensity imageI of the scene. Each appearance sampleI
represents a point in a high-dimensional space<n. As the
camera changes its poseP , I also changes, moving along
a manifold in<n. One can see that there exists a mapping
from P to I, denoted asI = f(P). Since the transforma-
tion space of the camera pose has six degrees of freedom,
the dimensionality of the appearance manifold is at most
six. The dimension will be smaller for cases of degenerate
camera motion—for example it will have dimension three
for pure translation. For degenerate scenes the dimension-
ality of the appearance manifold can be less than six. For
example, when a camera looks at a very distant scenef is
not invertible and the motion can not be fully recovered.
In this paper, we consider only cases where the appearance
manifold is not degenerate, and accordinglyf is invertible.

In general the appearance manifold of a scene is highly
nonlinear. Accordingly, numerous samples need to be ac-
quired to learn a representation of it. Although learningf
globally would be an ideal solution, this task is mostly in-
feasible in practice due to changes of lighting conditions
and movements of scene objects during capture, which vi-
olate the static scene assumption. However, as discussed
above, we know that the dimensionality of the appearance
manifold is at most six. Hence, a small number of appear-
ance samples simultaneously captured around current cam-
era pose are enough to derive a local approximation of the
appearance manifold. In particular, with six samples one
can generate a linear approximation of the appearance man-
ifold asdI = FdP , wheredI is the difference image,dP
is the camera motion, andF is the Jacobian matrix. This
holds as long as the camera motion is within the range of
an acceptable linear approximation. To achieve our goal we
need to solve three fundamental problems:

1. How to capture local appearance samples?
2. How to derive a local linear approximation given ap-

pearance samples?
3. Is a linear approximation is sufficient?

We will address these problems in the following sections.

3. Tracking

This section introduces our novel tracking frame work.
We will discuss how our techniques locally approximates
the appearance manifold with linear functions and introduce
a technique to capture the appearance manifold while the
tracking.

3.1. Linearize the appearance manifold

In this section, we introduce the algorithm to linearize
an appearance manifold and track camera motion inside the
linear space. Assume at timet, we simultaneously acquire
a center imageI0 from current camera poseP0 andm per-
turbed imagesIk at nearby perspectivesPk (k = 1, . . . , m).
Thus we can computem difference imagesdIk and camera
motiondPk by subtractingI0 andP0 from Ik andPk. We
want to use these samples to linearize the appearance func-
tion I(P) aroundP0:

I = I0 + F (P − P0) (1)

dI = F dP . (2)

HereI anddI aren-pixel images represented asn× 1 vec-
tors,P anddP are6 × 1 pose vectors, andF is the Jaco-
bian (partial derivative) matrix∂I/∂P of sizen× 6. As m
samples ofdIk and knowndPk are acquired, we can com-
bine these sample vectors into matrices and write the linear
equation as:

[dI1, dI2, . . . , dIm] = F [dP1, dP2, . . . , dPm] (3)

If m is greater than 6 and the images and poses are not de-
generated, the equation is of rank 6. We can compute the
least square solution ofF using the Moore-Penrose pseudo
inverse as

F = [dI1, dI2, . . . , dIm] [dP1, dP2, . . . , dPm]+ (4)

The above discussion addresses the appearance manifold
linearization problem in the general case wherem ≥ 6. For
an efficient system, one would like to use minimum num-
ber of perturbed cameras whose poses expand a 6D motion
space. In this case,m = 6 and the Jacobian becomes

F = [dI1, dI2, . . . , dI6] [dP1, dP2, . . . , dP6]
−1 (5)

Once a linear approximation is derived for the local ap-
pearance manifold, we can estimate the camera motion us-
ing a linear solver. Assume at framet + 1, an updated cen-
ter imageĨ0 is captured at the new camera poseP̃0, and
a temporal difference imagedĨ0 is computed by subtract-
ing I0 from Ĩ0. We can then estimate the camera motion
dP̃ = P̃0 − P0 as the least square solution of Equation (6).

F dP̃ = dĨ0 (6)

3.2. Sample with a camera cluster

As shown in Fig.1 we have constructed a prototypedif-
ferential camera clusterconsisting of four small synchro-
nized and calibrated cameras: onecentercameraC0 and
three camerasC1, C2 andC3 that are offset from the cen-
ter. The coordinate frame of the cluster is defined to align
with the center camera. We call the other three cameras
C1, C2 andC3 translationalcameras as they capture im-
ages from translated viewpoints.1 At any point in time, the
centercamera and thetranslationalcameras can be used to
obtain four simultaneous appearance samples of the local
appearance manifold. See the example images indicated by
the green arrows in Fig.1. In addition we generate three
warped images by rotating the image plane ofC0 around
its three coordinate axes. See the example images indicated
by the red arrows in Fig.1. One can consider these warped
images as having been captured by three virtualrotational
camerasC4, C5 andC6, each with the same camera center
asC0 but with rotated axes. Thus at any frame the clus-
ter effectively “captures” seven local appearance samples
I0, . . . , I6. In a non-degenerate case these seven images can
be used to derive a first order approximation of the local ap-
pearance manifold.

Figure 1.A prototypedifferential camera cluster(center) and il-
lustrative images. We obtain seven images total: one center, three
translated, and three rotated. Note that the images shown above
were rendered with an exaggerated baseline to make the differing
perspectives more apparent.

1In a general case, their axes do not need to be parallel with those of
thecentercamera.

The camera cluster provides seven real-time appearance
samples. Because therotational images are warped ver-
sions of thecenter image, the four samples are from the
same manifold. However, thetranslational samples are
captured using different cameras. To use these samples for
linearizing the local manifold captured by the center cam-
era, we need geometric and photometric consistency across
cameras. Assuming the radial distortion is removed from
all cameras, we can achieve geometric consistency by using
the intrinsic parameters of thecentercamera for thetrans-
lational cameras. Specifically we decompose the projection
matrix [9] to obtain camera intrinsic and extrinsic para-
meters. We then generate three virtualtranslationalcam-
eras using theintrinsic parameters of thecentercamera and
the extrinsicparameters of the realtranslationalcameras.
We then generate the translational images using homogra-
phy mappings. To ensure photometric consistency across
the cameras we used the approach presented in [11]. The
approach consists of a closed-loop process that tunes the
camera hardware settings such that the colors values of a
24-sample color target are consistent in all camera images.
This is followed by a software post-processing step that uses
the same 24 color samples to compute a mapping that fur-
ther improves photometric consistency.

4. Linearity of the local appearance manifold

4.1. An SVD analysis

In theory, given six non-degenerate samples one can al-
ways generate a linear approximation of the appearance
manifold, but such a linearization is accurate only within
a limited region. The size of each locally-linear region is
determined by the local smoothness of the manifold. Typ-
ically, the scene appearance is a highly nonlinear function
and its locally-linear regions are quite small. This means
that any differential camera cluster should have very narrow
baselines and a very high frame rate to acquire samples and
restrict motions within a small locally-linear region. This
is a great challenge. Even if these requirements can be sat-
isfied, due to the inherent electronic noise of the camera,
the signal-to-noise ratio of the spatial and temporal differ-
ence images might not be big enough to recover motion ac-
curately. We try to alleviate this problem by blurring the
images to smooth the appearance manifold.

Let us examine the smoothness of the appearance man-
ifold for a synthetic 3D scene consisting of two textured
planes (see the images in Fig.2). The two planes are placed
at different depths to help distinguish the parallax effects
from out-of-plane rotation and in-plane translation. Sev-
eral rectangular white textures are pasted on the dimmed
background (around the periphery) to provide some low fre-
quency texture the scene. The resolution of the synthetic
camera isn = 640 × 640. As shown in Fig.2(a), we use a

uniform distribution to randomly perturb the camera pose
and generatem = 50 images from nearby perspectives.
The maximum magnitude of the perturbation is carefully
defined so that the imaging of a point on the frontal plane
shift at most 4 pixels away from its position in the center
position. The images are blurred using a Gaussian filter and
sub-sampled at a 4-to-1 rate (see Fig.2(b)). This sampling
rate is higher than the Nyquist rate. We then acquire differ-
ence images by computing a mean image and subtracting
it form the sub-sampled images. The pixel intensities of
these difference images are reordered into column vectors
and grouped into an × 50 matrix. We then apply SVD de-
composition to the matrix.

To demonstrate the effects of smoothing the appearance
manifold, we use three different Gaussian kernels of size
[20 × 20, 40 × 40, 80 × 80] andσ = [3, 6, 12] to filter the
original perturbed images and generate three sets of blurred
images. The SVD results on matrices constructed using
these blurred images are shown in Fig.2(d,e,f). One can
see from Fig.2(e,f) that there are six significant singular
values, which implies that the smoothed local appearance
manifold can be appropriately linearized and the motion can
be recovered. While in Fig.2(d), the fourth, fifth and sixth
singular values are not easily distinguished from the rest.
While in general this could be an indication of a degener-
ate scene (under-constrained), in this case it is an indica-
tion that there is considerable non-linearity embedded in the
appearance manifold for the region where the samples are
captured. To address this we can sample closer to the center
pose, or smooth the images more heavily.

 (a) (b) (c)

 (d) (e) (f)

50 50

Figure 2.SVD analysis using synthetic images of a 3D scene with
textured foreground and background planes. The foreground plane
is the marbled square in the middle of the images. (a) The orig-
inal images captured from 50 close perspectives. (b) The blurred
images. Three Gaussian filters withσ = [3, 6, 12] are used. (c)
The power spectrum of the three Gaussian filter within[−40, 40]
of the frequency domain. (d) (e) (f) SVD results using the three
different filters.

4.2. A quantitative analysis using sine waves

The SVD analysis shows that an non-linear appearance
manifold can be smoothed using a low-pass filter. One can
thus sample inside a locally-linear region and compute a lin-
ear approximation of the filtered manifold. In this section,
we present a quantitative analysis of sampling and estimat-
ing motion on the smoothed manifold. In particular, for
a given sampling density (camera baseline), we try to de-
termine the threshold frequency for the low-pass filter and
derive an estimate of the estimation error. In the analysis,
we use sine signals as the scene contents, for any image can
be decomposed into a series of sine waves of different fre-
quencies.

 (a) (b)

Figure 3.1D orthographic cameras capture images of a sine signal.

Without loss of generality, let us consider the problem
in one dimension. Suppose two parallel 1D orthographic
camerasC0 andC1 capture imagesI0 andI1 of a sine signal
as shown in Fig.3(a). Both images containr samples from
one period of the sine signal, starting from initial phasesa0

anda1 as shown in Fig.3(b). At the next frame,C0 moves
x degrees along the wave and captures a new imageIx at
initial phaseax = a0 + x. We can write the 1D images as:

Ij = sin(aj + r k) (7)

wherej ∈ [0, 1, x] and k ∈ [0, 1, . . . , b359/rc]. Using
Equation (5) and (6), we compute a linear estimate of the
motionx̃ as:

x̃ = (a1 − a0) (Ix − I0)/(I1 − I0) (8)

The estimation errors for different motionsx using dif-
ferent baselines are shown in Fig.4. One can see from
Fig. 4(a) that with two cameras of baselineb = a1−a0, the
estimation error remains relatively small for motion within
[0, b] and increases quickly beyond this region. Region[0, b]
is the linear region for motion estimation. Fig.4 (b) shows
that while using a bigger baseline enlarges the linear region,
it also causes greater estimation errors for motions within
the linear range. For instance, using a baselineb = 120 the
estimation error forx = 30 is 5 degrees. In practice, we
empirically chooseb = 90 to achieve a balance between
the size of tracking volume and the tracking accuracy. This

means for a particular scene, we can consider adjusting the
camera baseline to be a quarter of highest frequency in the
image. Or for a fixed baseline, we should use a low-pass
filter whose threshold is four times the camera baseline.
Then we can expect to achieve good estimation for a mo-
tion within the baseline.

 (a) (b)

Figure 4.Analysis of motion estimation error. (a) Estimation error
(x̃−x)/b using specific baselinesb = a1−a0 = [30, 60, 90, 120]
degrees, andx ∈ [−180, 180] degrees. (b) Zoom in of (a) for
x ∈ [−10, 60] degrees.

We have derived some interesting conclusions using
analysis on 1D orthogonal cameras observing sine signals.
Unfortunately, the analysis can not be directly extended to
3D scenes and perspective cameras. Here we provide some
empirical verification. Consider the synthetic data set used
in the previous section. The shift of a point in the image
plane is in[0, 4]. According to the previous analysis, the
wave length of the highest frequency should be 16 pixels.
That is a 40 Hz signal for a640×640 image. From Fig.2(c)
and Table1, we can see that 95% energy of a Gaussian fil-
ter with σ = 6 is covered by its low-frequency spectrum
inside [−40, 40]. Thus the threshold of this low-pass filter
is 40Hz. Whereas for the filter withσ = 3, only 59% en-
ergy is within the 40Hz low-frequency spectrum. As shown
in Fig.2(d,e), a good linear approximation can be computed
for images blurred with the first filter but not for the second
one. The results support the analysis.

Gaussian kernelσ 3 6 12
Percentage energy covered by the
low frequency spectrums [-40,40]59% 96% 99%

Table 1.Energy distribution of Gaussian filters in the frequency
domain.

The above analysis shows that the appropriate tracking
volume is[0, b], which means the estimation error is asym-
metric. To solve this problem, one can consider choosing
the center camera according to the motion direction. For in-
stance, in the 1D case, if the cameras move to the left (see
Fig. 3), we can chooseC1 to be the center camera and use
I0 andI1 captured at the new frame to compute intensity
derivatives. This solution can be extended to 3D cases. To
use this technique, we need to detect the direction of the

motion. This can be achieved by doing motion estimating
twice, first for the direction and then for the real estimation.
While this solution appears to be awkward, the additional
computation is affordable, as it only involves solving a lin-
ear system that can be done efficiently.

5. Experimental Results

We first present some results based on synthetic data. We
simulated a scene consisting of a textured planar patch and
a curved mirror, both contained inside an a cube. The in-
ner six surfaces of the (surrounding) cube were textured
using the same image. The simulated camera cluster was
placed in front of the curved mirror. Thus the camera clus-
ter viewed some of the scene beyond the edges of the mirror,
and some of the reflection. Traditional tracking techniques
would not perform well on this data, since the epipolar con-
straint does not hold for images of the curved mirror as the
camera moves.

Fig. 5 presents some tracking results on the synthetic
scene over 40 frames. An original image (640 × 640)
is shown in (a), where the border of the curved mirror is
marked in green. One can see that the reflection of the pla-
nar patch is distorted by the curved mirror. When generating
the image sequences, we restricted the maximum extent of
the camera motion so that the pixel motion for frontal scene
points would be less than 4 pixels. We generated a blurred
image (shown in (e)) using a Gaussian kernel of160× 160
with σ = 24 and sub-sampled at 32 Hz (20 pixels). We
choose aσ that was larger than the analysis result shown in
4.2 to accommodate the reflection of the rear scene, which
could move faster in the image plane than the front scene.
We show the translation and rotation estimates in Fig.5
(b-d) and (f-h). The horizontal axes represent frame num-
bers and the vertical axes represent the accumulated mo-
tion across the previous frames. In the plots, the red curves
represent the true value, and blue curves represent the esti-
mated value. The translation and rotation of the camera is
defined in a global coordinate system that is aligned with the
coordinate system of the center camera at the initial frame.

In a second experiment, we tracked a real camera cluster.
The cluster was built using four PointGrey Flea digital color
cameras (see Fig.1). The baselines are 34 mm in theX and
Y direction, and 66 mm in theZ direction. As described in
3, geometric and photometric consistencies were enforced
across the four cameras. The color images were converted
to grayscale and used as scene appearance samples.

To obtain some form of a ground-truth reference mo-
tion track we moved the camera cluster along some pre-
determined grid points marked on a table (theX-Z plane)
while imaging the scene. Prior to data collection the cam-
eras were manually adjusted to obtain parallel principal
axes across frames. The results are shown in Fig.6. An
original image and its blurred version is shown in (a) and

(e). The resolution of the original image is1024×768. The
image was blurred using a Gaussian kernel of160 × 160
with σ = 24, and then sub-sampled at a ratio of 20 to 1.
The accumulated translations and rotations are shown in (b-
d) and (f-h). Again, the translations and rotations are de-
fined in the coordinate of the center camera at the initial
frame. One can see that the algorithm achieves good esti-
mation onX andY translations, and the estimated rotations
andZ translations are small. We believe the exhibited er-
ror is due primarily to inherent error in our (incremental)
approach, and registration error introduced by our manual
alignment process.

Our third experiment demonstrates the tracking of a
hand-held camera cluster over 200 frames. As the ground
truth motion was unknown, we illustrate the tracking ac-
curacy using projection error. Six 3D scene points were
chosen, and the coordinates of their projections in the four
images of the initial frame were extracted using a standard
OpenCV KLT tracker. We then back-projected and com-
puted their 3D positions in the world coordinates defined
by the pose of the center camera at the first frame. As the
cluster moved, its incremental motion at every frame was
estimated and the accumulated motion between the current
frame and the first frame was computed. These accumulated
motion parameters were then used to compute a projection
matrix of the center camera at its current pose. We used the
estimated projection matrix to project the 3D points onto
the currentcenterimage, and indicated the projections with
white patches. The results are presented in Fig.7. The im-
ages are blurred and sub-sampled using the same parame-
ters described in the second experiment. (a) shows the pro-
jections of the 3D points in thecenter image at the initial
frame. The projections using matrices computed by esti-
mated camera motions are shown in (b-h).

6. Conclusions

We presented a novel method for incrementally tracking
camera motion through sampling and linearizing the local
appearance manifold. We have demonstrated the method
using both simulation and a real prototype camera cluster.

One area of future work we envision is related to the
imaging component of the cluster. We have some ideas
for using custom optics to effectively achieve the same cen-
ter, translational, and rotational images using asingleimage
sensor. This could make the unit more compact, while also
helping address color, geometry, and speed issues.

In addition, the relatively simple and regular nature of
the computation could lead to a relatively fast system for on-
line estimation, perhaps using specialized embedded hard-
ware such as FPGAs. As the processing speed increases,
the inter-frame time could be decreased, improving the lin-
ear approximations and some other aspects of the approach.

Finally, because the method is inherently incremental

(estimating and integratingdP), it is likely that in prac-
tice one would want to periodically use some of the im-
ages for more conventional feature-based drift correction.
Like MPEG and other video encoding schemes, future hard-
ware could send a continuousdP stream with periodic
key frames to the host computer, enabling fast incremental
tracking with drift estimation and correction.

References

[1] B. Bascle and R. Deriche. Region tracking through image se-
quences.In Proc. of International Conference on Computer
Vison, 2005.1

[2] S. Birchfield. Elliptical head tracking using intensity gradi-
ents and color histograms.In Proc. of Computer Vison and
Pattern Recognition, 1998.1

[3] A. Bruss and B. Horn. Passive navigation.Comput Vision,
Graphics and Image Process, 21:3–20, 1983.1

[4] M. L. Cascia, S. Sclaroff, and V. Athitsos. Fast, reliable head
tracking under varying illumination: An apporach based on
registration of texture-mapped 3d models.IEEE Transaction
on Pattern Analysis and Machine Intelligence, 21(6), 2005.
1

[5] D. Comaniciu, V. Ramesh, and P. Meer. Real-time tracking
of non-rigid objects using mean shift.In Proc. of Computer
Vison and Pattern Recognition, 2000.1

[6] A. M. Elgammal. Learning to track: Conceptual manifold
map for closed-form tracking.In Proc. of Computer Vison
and Pattern Recognition, 2005.1

[7] G. D. Hager and P. N. Belhumeur. Efficient region tracking
with parametric models of geometry and illumination.IEEE
Transaction on Pattern Analysis and Machine Intelligence,
20(10):1025–1039, 1998.1

[8] K. Hanna. Direct multi-resolustion estimation of ego-motion
and structure from motion.In Proc. of IEEE workshop on
Visual Motion, 1991.1

[9] R. Hartley and A. Zisserman.Multiple View Geometry in
Computer Vision. Cambridge University Press, 2000.3

[10] D. Heeger and A. Jepson. Subspace methods for recovering
rigid motion i: Algorithm and implementation.Int. Journal
of Computer Vision, 7(2):95–117, 1992.1

[11] A. Ilie and G. Welch. Ensuring color consistency across mul-
tiple cameras.In Proc. of International Conference on Com-
puter Vison, 2005.3

[12] A. Jepson, D. Fleet, and T. El-Maraghi. Robust on-line ap-
pearance models for visual tracking.In Proc. of Computer
Vison and Pattern Recognition, 2001.1

[13] H. Louguet-Higgins. A computer algorithm for reconstruct-
ing a scene from two projections.Nature, 293:133–135,
1981.1

[14] M. Pollefeys, R. Koch, and L. V. Gool. Self-calibration and
metric reconstruction in spite of varying and unknow internal
camera parameters.In Proc. of International Conference on
Computer Vison, 1998.1

[15] B. Triggs. Autocalibration and the absolute quadric.In Proc.
of Computer Vison and Pattern Recognition, 1997.1

(a) (b) (c) (d)

(e) (f) (g) (h)

 Figure 5.Tracking in a synthetic scene with a curved mirror over 40 frames. (a) An image of the synthetic scene. The border of the curved
mirror is marked in green. (b)-(d) Estimation of camera translations (in mm) in X, Y and Z directions. Red curves represent the true value
of the accumulated motion, blue curves represent the estimated value of the accumulated motion. (e) A blurred image. (f)-(h) Estimation
of camera rotation angles (in degree) around Z, X and Y axes. Red curves represent the true values of the accumulated motion, blue curves
represent the estimated values of the accumulated motion.

(a) (b) (c) (d)

(e) (f) (g) (h)
 Figure 6.Tracking a controlled camera motion over 20 frames. (a) A image of the real scene. (b)-(d) Estimation of camera translations (in

mm) in X, Y and Z directions. Red curves represent the true values of the accumulated motion, blue curves represent the estimated values
of the accumulated motion. (e) A blurred image. (f)-(h) Estimation of camera rotation angles (in degree) around Z, X and Y axes. Red
curves represent the true values of the accumulated motion, blue curves represent the estimated values of the accumulated motion.

(a) (b) (c) (d)

(e) (f) (g) (h)

 Figure 7.Tracking a hand-held camera motion over 200 frames. The tracking results are illustrated through projecting six 3D scene points
onto the image plane. The projection matrix is computed using the estimated motion. The positions of the 3D points are marked as white
patches. (a) The projected points in thecenterimage at the initial frame. (b)-(h) The projected points in thecenterimage at frame 20, 40,
60, 140, 160, 180 and 200.

