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ABSTRACT

In this paper we present a novel approach to directly recover
the location of both microphones and sound sources from
time-difference-of-arrival measurements only. No approxi-
mation solution is required for initialization and in the ab-
sence of noise our approach is guaranteed to always recover
the exact solution. Our approach only requires solving lin-
ear equations and matrix factorization. We demonstrate the
feasibility of our approach with synthetic data.

Index Terms— Self-localization, Microphone Array,
Sensor Network, TDOA, Factorization

1. INTRODUCTION

The use of microphone arrays is now widespread. Micro-
phone arrays enable beamforming and speaker tracking for
applications such as smartrooms, surveillance and event
recording. In addition there are also multiple applications
for other accoustic sensor networks.

Typically the choice of phase-shifts used to focus on a par-
ticular spatial location is governed either by a priori knowl-
edge of the spatial locations of the microphones, or by adap-
tation based on the signals received by the array. In the latter
case, when adaptation takes place based on the sensor data,
the approaches used aim to maximize the signal to noise ratio
for a particular signal, and hence explicit knowledge of the
spatial layout of the microphone array is not necessary.

However, knowledge of the spatial configuration of the
microphones is necessary in order to do certain things, such
as tracking of a speaker in 3D metric space and in general
estimating the 3D locations of sources in space [1, 2]. To do
this without estimating the 3D locations of the microphones
would require tedious calibration of a mapping between
phase-shifts and locations in 3D space.

On the other hand, the task of calibrating the 3D lo-
cations of the microphones is non-trivial. Apart from the
obvious approach of physically measuring the locations, a
few approaches have been suggested that allow more flexibil-
ity by augmenting the measurement situation in some way.
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Sachar et al. [3] suggest using a movable rig with sources in
known configuration, which allows triangulation of the mi-
crophones. Raykar and Duraiswami [4] assume co-location
of microphones and speakers, which simplifies the problem.

While these approaches provides nice workable solutions
for many applications, ultimate flexibility would only come
with the ability to self-calibrate the microphone array config-
uration using only the recorded sensor data from an arbitrary
array with unknown spatial configuration. Moses et al. [5]
described a 2D search to solve the initialization problem for
a planar world. To our knowledge, no approach to attacking
this problem in general in 3D has yet been proposed.

It is relatively straightforward to devise an algorithm that
iteratively optimizes an estimate consisting of microphone
spatial configuration and source timings in order to explain
the time-difference-of-arrival (TDOA) measurements as well
as possible [6]. Rockah and Schultheiss [7] investigate lower
bounds on the sensitivity of such a potential approach to noise
in the measurements. To achieve optimal accuracy, such an it-
erative refinement procedure should be used as the final stage
of an algorithm. However, this requires a reasonably accurate
initialization to converge to the global minimum.

Perhaps most related to our proposed approach is the work
of Thrun [8] who presents a rank-3 factorization algorithm for
solving for the sensor array, but under the assumption that the
sources are far away from the microphone array (so that pla-
nar propagation fronts can be assumed), an assumption which
does not hold in applications such as for example smart rooms
or extended sensor network configurations. Our proposed ap-
proach is based on a rank-5 factorization which models spher-
ical propagation fronts needed for the general case.

2. APPROACH

Let m sound sources indexed byi for 1 ≤ i ≤ m be repre-

sented by vectorssi =
[

xi yi zi

]⊤
wherexi, yi, zi are

spatial coordinates and theti represent the (also unknown)
times of departure. Similarly, letn microphones indexed
by j for 1 ≤ j ≤ n be represented by spatial coordinates

mj =
[

Xj Yj Zj

]⊤
. Let the measured time of arrival

of sourcei at microphonej be tij . This would typically be
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obtained by correlating the signal recorded by the different
microphones. Then we have

(xi − Xj)
2 + (yi − Yj)

2 + (zi − Zj)
2 = v2(tij − ti)

2, (1)

wherev is the speed of sound. This can be expanded into

S⊤
i Mj = v2(t2ij − 2tijti + t2i ), (2)

where

Si = [ s⊤i si −2xi −2yi −2zi 1 ]⊤

Mj = [ 1 Xj Yj Zj m⊤
j mj ]⊤

It should be noticed that one can also move the term int2i to
the left handside of the equation, i.e.

S
′⊤
i Mj = v2(t2ij − 2tijti) (3)

with S′
i =

(

Si −
[

v2t2i 0 0 0 0
]⊤

)

. Collecting all
yields an(m × 5).(5 × n) = m × n matrix equation.

2.1. Computing the time of departure

In this paragraph we discuss how the times of departureti
can be obtained when TDOA measurements for 5 sources are
available for at least 10 microphones. It is obvious from the
above that them × n matrix T of coefficients{t2ij − 2tijti}

has to be rank five. LetA = {t2ij}, B = {−2tij} andD a
diagonal matrix withti as entries. ThenT can be written

T = A + DB, or alternativelyT =
[

I D
]

[

A
B

]

(4)

to separate out the unknownsD. Since the first row ofM
contains only ones, there must exist a linear combination for
each set of five independent rows ofT that results in a row

[1 . . . 1]. DefineĀ =
[

A⊤
i1

A⊤
i2

A⊤
i3

A⊤
i4

A⊤
i5

]⊤
and

B̄ =
[

B⊤
i1

B⊤
i2

B⊤
i3

B⊤
i4

B⊤
i5

]⊤
for a choice of rows

i1, i2, i3, i4, i5. Thus there must exist a vectorC for which

C⊤
[

I D̄
]

[

Ā
B̄

]

= [1 . . . 1] or X

[

Ā
B̄

]

= [1 . . . 1] (5)

To computeX uniquely, the matrix

[

Ā
B̄

]

has to be of rank

10 which implies that this approach requires at least 10 mi-
crophones. The absolute timings can be obtained fromX as
tik

= Xk+5/Xk and can be solved for five sources at a time.
We arbitrarily divide the sources in groups of 5 to solve for
ti. Since for each sourcei a shift in ti would result in a cor-
responding shift in alltij associated with that source, one is
free to apply such a shift. For numerical reasons, it is there-
fore recommended for each sourcei to use zero-mean relative
timings, i.e. subtract the average value

∑m

j=1
tij from the cor-

respondingtij . This was shown to improve the accuracy of
the results in our experiments.

2.2. Refinement of the absolute timings

Once the complete vector of source timingsti has been com-
puted, the matrix given on the right-hand side of Eq. (3) is
completely determined and can thus be factorized as follows
in two rank 5 matrices:

v2(t2ij − 2tijti) = Ŝ
′⊤
i M̂j (6)

In practice this can be achieved by using the singular value
decomposition to obtain the closest rank-5 approximation of
v2(t2ij − 2tijti).

When more than the minimal number of sounds are avail-
able, these results can be refined as follows using a simple
iterative procedure. Our goal is to minimize

argmin
ti,Si,Mj

‖t2ij − 2titij −
1

v2
Ŝ

′⊤
i M̂j‖ (7)

and we do this by alternating between minimizing with re-
spect to variables indexed byi and byj. For eachi, (Ŝ′

i, ti)

can be computed using linear least-squares. The vectorsM̂j

can be computed aŝMj = {Ŝ′
i}

†
(

t2ij − 2tijti
)

with † rep-
resenting the Moore-Penrose pseudo inverse. While this it-
erative procedure is in principle optional, in the presenceof
noise it significantly improve the quality of the results. Our
experiments show that a few iterations are in general suffi-
cient. Notice that since both steps of our iteration minimize
the same function, this approach is guaranteed to converge.
After refinement̂S⊤

i is easily obtained from̂S
′⊤
i .

2.3. Computing source and microphone locations

Of course, at this stage the matricesŜi andM̂j are only deter-
mined up to an arbitrary non-singular5×5 matrix, and are re-
lated toSi andMi by a transformation matrixH asS⊤

i Mj =

Ŝ⊤
i H−1HM̂j . We will compute this transformation as a con-

catenation of three transformationH = HQHSHM . The first
transformationHM will ensure that the first row ofMj is
equal to[1 . . . 1]. The secondHS will ensure that the same
is true for the last row ofSi. Finally the transformationHQ

imposes the quadratic consistency constraints onMj or Si.

The transformationHM can be written as

[

h⊤
M

0 I

]

and hM can be computed by solving the linear system of
equationsh⊤

MM̂j = 1. This step requires at least 5 micro-
phones. Similarly, the transformationHS can be written as
[

I
0

hS

]−1

andhS can be computed by solving the lin-

ear system of equationshSŜi = 1. In fact the first element of
hS has to be zero (to avoid modifying the first row ofHMM̂i)
and thus only four or more sources are required for this step.

The remaining constraints are quadratic in nature and en-
sure that the quadratic term inSi andMj are consistent with



the linear terms. The constraint onMj can be written as:

M⊤
j BMj = 0 with B =
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2
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0 0 0 1 0

− 1

2
0 0 0 0













(8)

Similar constraints can be written down forSi. Here we will
solely use the constraints forMj as using a mix of constraints
onMj andSi is non-trivial. Therefore,

M̂⊤
j H⊤BHM̂j = 0 (9)

By definingM̂ ′
j = HSHMM̂j andQ = H⊤

QBHQ the fol-
lowing linear equation is thus obtained for the coeffients of
the symmetric matrixQ:

M̂
′⊤
j QM̂ ′

j = 0 (10)

As HQ should leave the first row of̂M ′
j and the last row of̂S′

i

unchanged, it must have the following form:

HQ =











1 0 0 0 0

. . . . 0

. . . . 0

. . . . 0

. . . . 1











and henceQ=











. . . . −

1

2

. . . . 0

. . . . 0

. . . . 0

−

1

2
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Therefore, taking into account symmetry,Q only has ten
degrees of freedom and these coefficients can be computed
linearly given ten or more microphones (or alternatively
sound sources) using Eq.(10). Then, it can be verified that a
valid choice forHQ is given by

HQ =













1 0 0 0 0

t RK
0
0
0

t⊤t − Q11 2
(

t⊤K −
[

Q12 Q13 Q14

])

1













(11)
with K the Cholesky factorization of the middle3 × 3 part
of Q andR andt representing the rotation and translation as-
sociated with the Euclidean and mirroring ambiguity of the
reconstruction (e.g. chooseR = I andt⊤ = [000] for re-
construction). In summary, this approach to absolute arrival
timing factorization requires 4/10 or 10/4 microphones and
sound sources (where the computation of absolute timings
from relative required a minimum of 10/5 microphones and
source). It should be noted that a similar algorithm can be set
up for any dimension and in particular in 2D where a rank 4
factorization is obtained.

2.4. Non-linear least-squares refinement

We have also implemented a non-linear least-squares ap-
proach which allows us to obtain a maximum-likelihood

estimation under the assumption of independent Gaussian
noise on the TDOA measurements. The approach minimizes
the following expression:

arg min
si,mj ,ti

∑

i

∑

j

(

1

v

√

S⊤
i Mj + ti − tij

)2

(12)

2.5. Planar array - 3D sound

The case of a planar microphone array recording 3D sound
sources is very interesting and can be solved effectively upto
a per-source mirroring ambiguity about the microphone array
plane. Let us assume without loss of generality that the mi-
crophone array corresponds to theXY -plane. In this case we
have:(xi − Xj)

2 + (yi − Yj)
2 + z2

i = v2(tij − ti)
2, which

can be expanded to

S
′⊤
i Mj = v2(t2ij − 2tijti), (13)

where

S′
i = [ s⊤i si − v2t2i −2xi −2yi 1 ]⊤

Mj = [ 1 Xj Yj X2
j + Y 2

j ]⊤

The planar structure of the array thus causes the rank of
the above matrices to drop to four. Therefore, we can use
the approach described in Section 2.1 to compute the arrival
timings, but enforcing the lower rank which can be done lin-
early using 8 or more microphones. Similarly, the approach
described in Section 2.3 can be used with the quadratic con-
straints coming from the microphones. It should be noted
that thez2

i term in S′
i means that in this case there are no

quadratic constraints available for the sources. OnceMj and
S′

i have been recovered, the location of microphones and
sound sources can be extracted from them as follows:

si =
[

− 1

2
S′

i2 − 1

2
S′

i3 ±
√

S′
i1−

1

4

(

S
′2
i2 +S

′2
i3

)

+v2t2i

]⊤

mj =
[

Mi2 Mi3 0
]⊤

Notice that the location of the sources can only be recovered
up to a mirror ambiguity about the planar microphone array.

3. EXPERIMENTS

We perform several experiments on synthetic data, both for
the general 3D case, as well as the case of 3D sources sensed
by a planar array. For the 3D case, two different synthetic con-
figurations are used. The first configuration consists of both
microphones and sound sources being arbitrarily distributed
over a unit cube. The second configuration consists of mi-
crophones being placed on a regular grid on three faces of
the unit cube, with sound sources arbitrarily distributed in the
unit cube. For the planar microphone array experiments, we
also distribute the sources randomly over a unit cube. In this
case the microphone array consists of a regular grid on one
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Fig. 1. Figures illustrating the effect on noise on the estima-
tion of absolute time differences△, microphone localization
⊲ and source localization⊳. 3D sound-3D array localization
(5s/10m and20s/20m) (top) and3D sound-2D array local-
ization (5s/9m and20s/20m) (bottom).

of the faces of the cube. The noise corresponds to indepen-
dent Gaussian noise added to the relative time of arrival data.
The average amplitude of the noise is specified relative to the
time it takes sound to travel 1m (i.e.1

340
s). The error corre-

sponds to the mean error after alignment between the localiza-
tion result and the ground truth. In Fig. 1 we can see that with
minimum configurations usable results are obtained for noise
levels below10−4 while with more data very good results can
already be obtained for a noise level of10−3. Fig. 2 shows
the effect of varying the number of sources and microphones
on the accuracy of the results.

4. CONCLUSION

In this paper we have presented what is to our knowledge the
first approach for joint source and sensor localization estima-
tion which does not require any initialization. This has signif-
icant advantages for applications where source and sensor lo-
cations are not approximately known a priori and can enable
opportunistic calibration of sensor arrays. We have shown
through synthetic experiment that the approach provides rea-
sonable results and is able to successfully initialize non-linear
least-squares optimization. Our future work will consist of
experiments with real data and exploring applications.
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Fig. 2. Experiments with varying numbers of microphones
and sources.
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